Chain calculations

Conveyor chain calculations

Chain speed in m/sec (v)

\[
v = \frac{z \times p \times n}{60,000}
\]

- **v** = chain speed in meters per second
- **z** = number of teeth
- **p** = chain pitch
- **n** = rotations per minute

Capacity in m3 per hour (Q)

\[
Q = A \times v \times 3.600 \text{ sec.}
\]

- **Q** = capacity in m3 per hour
- **A** = trough width \(\times \) layer height in m2
- **v** = chain speed in meters per second

Material weight on the chain in kg (mass$_1$)

\[
\text{Mass}_1 = \text{tons per hour} \times \text{distance in meters} \times \frac{v \times 3.6}{\text{v} \times 3.6}
\]

- **Mass$_1$** = material weight on the chain in kg
- **v** = chain speed in meters per second

Power in Kw (P)

\[
P = \frac{(v \times \text{mass}_1 \times \mu_1 + \text{mass}_2 \times \mu_2) \times 9.81}{1.000}
\]

- **P** = power in Kw
- **v** = chain speed in m per sec
- **mass$_1$** = material weight on the chain in kg
- **\(\mu_1\)** = friction between steel and the product (for a smooth-running product ca. 1.15)
- **mass$_2$** = total chain weight in kg
- **\(\mu_2\)** = friction between the steel bottom and the chain (for steel pushers approx. 0.25 and for plastic pushers approx. 0.15)

All information is subject to printing and typing errors and act as a guideline. Therefore no rights can be derived from this.